Vesicle trafficking dynamics and visualization of zones of exocytosis and endocytosis in tobacco pollen tubes.

نویسندگان

  • Laura Zonia
  • Teun Munnik
چکیده

Pollen tubes are one of the fastest growing eukaryotic cells. Rapid anisotropic growth is supported by highly active exocytosis and endocytosis at the plasma membrane, but the subcellular localization of these sites is unknown. To understand molecular processes involved in pollen tube growth, it is crucial to identify the sites of vesicle localization and trafficking. This report presents novel strategies to identify exocytic and endocytic vesicles and to visualize vesicle trafficking dynamics, using pulse-chase labelling with styryl FM dyes and refraction-free high-resolution time-lapse differential interference contrast microscopy. These experiments reveal that the apex is the site of endocytosis and membrane retrieval, while exocytosis occurs in the zone adjacent to the apical dome. Larger vesicles are internalized along the distal pollen tube. Discretely sized vesicles that differentially incorporate FM dyes accumulate in the apical, subapical, and distal regions. Previous work established that pollen tube growth is strongly correlated with hydrodynamic flux and cell volume status. In this report, it is shown that hydrodynamic flux can selectively increase exocytosis or endocytosis. Hypotonic treatment and cell swelling stimulated exocytosis and attenuated endocytosis, while hypertonic treatment and cell shrinking stimulated endocytosis and inhibited exocytosis. Manipulation of pollen tube apical volume and membrane remodelling enabled fine-mapping of plasma membrane dynamics and defined the boundary of the growth zone, which results from the orchestrated action of endocytosis at the apex and along the distal tube and exocytosis in the subapical region. This report provides crucial spatial and temporal details of vesicle trafficking and anisotropic growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Still life: Pollen tube growth observed in millisecond resolution.

Our recent work used novel methods to localize and track discrete vesicle populations in pollen tubes undergoing oscillatory growth. The results show that clathrin-dependent endocytosis occurs along the shank of the pollen tube, smooth vesicle endocytosis occurs at the tip, and exocytosis occurs in the subapical region. Here, growth of tobacco and lily pollen tubes is examined in greater tempor...

متن کامل

Secretion and Endocytosis in Pollen Tubes: Models of Tip Growth in the Spot Light

Pollen tube tip growth is a widely used model ideally suited to study cellular processes underlying polarized cell expansion. Local secretion supplying material for plasma membrane (PM) and cell wall extension is essential for this process. Cell wall biogenesis requires fusion of secretory vesicles with the PM at an about 10× higher rate than PM extension. Excess material is therefore incorpora...

متن کامل

Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.)

Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis....

متن کامل

Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes.

Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell membrane economy and regulates the polarized composition of ...

متن کامل

NtGNL1 Plays an Essential Role in Pollen Tube Tip Growth and Orientation Likely via Regulation of Post-Golgi Trafficking

BACKGROUND Tobacco GNOM LIKE 1 (NtGNL1), a new member of the Big/GBF family, is characterized by a sec 7 domain. Thus, we proposed that NtGNL1 may function in regulating pollen tube growth for vesicle trafficking. METHODOLOGY/PRINCIPAL FINDINGS To test this hypothesis, we used an RNAi technique to down-regulate NtGNL1 expression and found that pollen tube growth and orientation were clearly i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2008